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DATA DESCRIPTION

* US weekly data in time frame January 2015 — November 2022

* Most common conditions reported on death certificates where COVID-19 was listed
* Death counts of

]

, Respiratory,

’

20000

15000

DeathCount

10000

5000

R A A VT o

S AW AN e N AN i
MWW

2016

2018

date

2020 2022

AT

Data

Copulas

Marginal Model

Copula Model Results Scenarios




DATA DESCRIPTION
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MOTIVATION

* Data shows clear changes between periods before and after COVID-19 started

* Motivation: What is the influence of COVID-19 on major death counts?
1. Marginal structure: Assess level changes in mortality before/after COVID-19 started

2. Dependence structure: Understand dependence structure among causes and whether it
changes with COVID-19

- Separate marginal behavior from the depencence structure

- Copula approach
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OUTLINE

Introduction to Copulas
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NOTATION

 For this talk: Only interested in bivariate copulas

* Notation:

* Consider random variables X4, X, with

* marginal distribution functions Fy, F,,

* marginal densities f3, f,, and

* joint distribution function F

* Example: X; ~ F;, X, ~ F, independent
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INTRODUCTION COPULAS (1)
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X, ~ F;,X, ~ F, independent
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X, ~ N(2,3), X, ~ Exp(1.5)
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INTRODUCTION COPULAS (1)

X, ~ F;,X, ~ F, independent

Histogram of X1 Histogram of X2
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* PIT: Xi ~ Fi = Ui = FL(XL) ~ U[O,l]
* Inverse PIT: U; ~ U[0,1] = F,(U;) ~ F;

Density
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X, ~ N(2,3), X, ~ Exp(1.5)

X-Scale: X; U-Scale: U;
] | U; = Fi(X;)
o] o >
8 :: < 3
g X; = F (U

X1 u1
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INTRODUCTION COPULAS (1)

X-Scale: X;

X2

U-Scale: U;

U; = F;(X;)
g

4 S
X; = F7H(Uy)
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0.6 0.8 1.0

U1

structure

Copulas separate margins from dependence

Bivariate copula C: distribution function on [0,1]? with
uniformly distributed margins

Sklar‘s Theorem (1959):
F(x1,x3) = C(F1 (x1), F; (xz))
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INTRODUCTION COPULAS (1)

X-Scale: X;

X2

U-Scale: U; Z-Scale: Z;
U; = Fi(X;) Zy=o7 N (Up |
> > )
- g <
X; = F (U i = P(Z;) :

structure

* Copulas separate margins from dependence

* Bivariate copula C: distribution function on [0,1]? with
uniformly distributed margins

* Sklar‘s Theorem (1959):
F(x1,x3) = C(F1(x1)»F2 (xz))

Use contour plots on z-scale

* |dentify signature shapes of
common bivariate copula families

* Here: Circles correspond to
independence
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INTRODUCTION COPULAS (2)

Gaussian, tau=0.3

=3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Examples of bivariate copula families:

Student t, tau=0.3

=3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Gaussian, tau=0.7

=3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Clayton, tau=0.7

-3 -2 -1 0 1 2 3

Student t, tau=0.7

=3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Gumbel, tau=0.7

-3 -2 -1 0 1 2 3

=3 -2 -1 0 1 2 3

Kendall’s 7: Dependence measure in [-1,1], does not depend on marginal distributions
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INTRODUCTION COPULAS (2)

Examples of bivariate copula families:

Gaussian, tau=0.3 Student t, tau=0.3 Gaussian, tau=0.7 Student t, tau=0.7

Ep | E

T Advantages: /

— (1) Copulas allow for very flexible, ———
non-Gaussian dependencies

(2) Copulas can be used together

with arbitrary margins

& TF
] a1 ]
iy o008 h
om
_I:'!I _; _I1 ‘I:| 1I :IZ :;. T T T T T T T

Kendall’s 7: Dependence measure in [-1,1], does not depend on marginal distributions

S\(IT Data Copulas Marginal Model Copula Model Results Scenarios
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Marginal Model
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MARGINAL MODELING

Original Scale
Start with mortality data on the original scale: Yt,j, t=1,..,T,j=1,..,5
| = Circulatory
2 = Alzheimer
3 = Respiratory
4 = Diabetes
5 = Malignant
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MARGINAL MODELING

Original Scale

Start with mortality data on the original scale:

Y, t=1,..,T,j=

J?

1,..,5

Decompose

A

y

Remainder R, ;

Yt,j — Tt,j + St,j + 51’15 ‘ CDt + 52 ‘ It + Rt,j

I; is | before COVID-19 started and 0 afterward

Decomposition using [Dokumentov and Hyndman 2022]

Decompose each cause Y} ; into Trend T ;, Seasonality S, ;, Covid Deaths CD, Indicator I,
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MARGINAL MODELING

Original time series

Trend ’IA’t’ j

Seasonality S‘tl J

COVID-19 and Indicator

Sl,t ‘ CDt + 82 ‘ It

Remainer R, ;

Observed, Trend
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MARGINAL MODELING

Original Scale

Start with mortality data on the original scale: Y, t=1,..,T,j=1,..,5

K

Decompose

A 4

Decompose each cause V; j =Ty ; + S;j + 01 - CDy + 0, - [t + R,

Residual Scale

Obtain standardized residuals
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MARGINAL MODELING

Original Scale

Start with mortality data on the original scale: Y, t=1,..,T,j=1,..,5

K

Decompose

A 4

Decompose each cause V; j =Ty ; + S;j + 01 - CDy + 0, - [t + R,

Residual Scale

Obtain standardized residuals

s Yitj T Ve
€t,j Py
J
U-Scale '
Pseudo copula data can be obtained by i, ; = Aj(ét,j)
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OUTLINE

Copula Model
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|. PROPERTY: SERIAL DEPENDENCE

Circulatory

™ -

-3 -2

-1 0 1

Alzheimer

o -

Respiratory

™ -

————————

-3 -2

-1 0 1

Diabet Malignant
" " * Consider contour plots of
(2t Ze-1,5)
_ ~1( 4 ~1( 5
- - = (‘I’ (1), @ (ut—l,j))
e Strong non-Gaussian serial
dependence (except malignant)
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Malignant

0.44 0.49 0.42 0.27
Alzheimer

ﬁ 0.43 0.23 0.17

@ 0.25 0.26

ﬁ 0.13

2. PROPERTY: CROSS-SECTIONAL DEPENDENCE

Upper triangle: u-data scatter and
Kendall's tau

Diagonal: Histograms of u-data

Lower triangle: Contours of

(20, 2c1) = (q’_l(ﬁt,j)»cp_l(ﬁt,k))

Non-Gaussian cross-sectional
dependence visible
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3. PROPERTY: KENDALL'S TAU

0.61
-~ Alz, Diab
—~ ‘ 2= \ e
\B) / —
A / ) -
3 \ " 7 AI.z,Resp
i 04 I - Circ, Alz
Q ‘ - Circ, Diab
= /.’ - Circ, Mal
'S | W /N /N )
5 0. V - Circ, Resp
Ne—f—7 —— — ‘ ~ Resp, Diab
\v, Pairwise conditional Kendall’s tau - Resp, Mal
0.0- f changes with COVID-19 Deaths
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3. PROPERTY: KENDALL'S TAU

0.6

- Alz, Diab
— /\ ~ Alz, Mal
§ » . : AI.z,Resp
e Which model allows oire, Alz
8 . - Circ, Diab
3 for these properties!? + Circ, Ma
502 &\\/ / %/ \' - e fesp
= Diab, Mal
Ne [ 7 Resp, Diab
\W ~ Resp, Mal
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COPULA-SSM WITH TIME-VARYING PARAMETERS

Tae ) Tiat 7\ Tiat N T
J Vv o V

Ui—11| °°° U1 Ut °ee Ues Upr1| °°° Utss

obs

. Fort=1’ ...,T’j=1, lll,5:
Observation Equation: Uy ;|V; = vt,TtO?S, obs L C 3|v(\fut; 277,
3

la .
State Equation: V;|V,_1 = vy_1, Tiaz, Miat ~ OVQI‘; (*|ve—15 Tat)
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COPULA-SSM WITH TIME-VARYING PARAMETERS

Tae ) Tiat 7\ Tiat N T
J Vv o V

Ui—11| °°° U1 Ut °ee Ues Upr1| °°° Utss

obs

For t = 1’ ...,T’j = 1, lll,5:
T
Observation Equation: U, ;|V; = vt,TtO?S,m;)bS ~ |V( lvg; 7777,
3

la .
State Equation: V;|V,_1 = vy_1, Tiaz, Miat ~ OVQI‘; (*|ve—15 Tat)

FZ(t.") = aj + B; - NCD; - p; describes dependence of TObS on COVID-19 deaths

. mlat,mj‘-’bs € M = {Gaussian, Student t, Gumbel, Clayton}

Latent variable: Captures the unobserved health and lifestyle of the US population
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OUTLINE

Results of Bayesian Inference
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THE MODEL TWODEP

Liat Uat FZ(t%%%) = a; + B; - NCD
FZ(TZ?S) =a; + B - NCD, =m t,j j j t

——_—

FZ(rg?S) = q;

Ut,l Ut,Z Ut,3 Ut,4- Ut,5

Circulatory = Alzheimer  Respiratory = Diabetes Malignant
The model:

* Only the dependence between Alzheimer/Respiratory and latent states changes with
COVID-19

e Outperforms (1) the Gaussian model, (2) the model where COVID-19 is not taken into
account (B; = 0), (3) the model where all 5; # 0
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THE MODEL TWODEP

_—
bsy _
obs cee tlat :m tlat ven FZ(TtO,jS) =a; + ,Bj - NCDy,

FZ(Tt,j

——_—

FZ(rg?S) = q;

)=C(J+ﬂJNCDt

Ut,l Ut,Z Ut,3 Ut,4- Ut,5

Circulatory = Alzheimer  Respiratory = Diabetes Malignant
Interpretation:
* COVID-19 had a strong influence on the elderly population

* Respiratory and especially Alzheimer are along the leading causes of death in older
population

* Both respiratory diseases and COVID-19 directly impact the respiratory system
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OUTLINE

Scenarios
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SETUP OF SIMULATION

e Study pandemic period from June 2020 until November 2022
What is the effect of a constant low/high number of COVID-19 deaths

Study two scenarios

Low-COVID-19 scenario:
* Set CD;,,, = 2353 to the 25% sample quantile of observed values

High-COVID-19 scenario:

* Set CDpjgn = 26026 to maximum observed value
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SCENARIO-BASED SIMULATION

Respiratory death counts Alzheimer death counts 3 Total death counts

000000000000 7 X X 2020-07

Green: low-COVID-| 9,

High scenario lowers Respiratory death counts (Competing causes of death)

High scenario elevates Alzheimer death counts until 2022

At the end: High scenario lowers Alzheimer (Potentially health policy interventions)

Overall mortality increases from low to high scenario

Wider interval for high scenario: Indicates chance of extreme mortality risk
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CONCLUSIONS

 Utilize copula SSMs to quantify the
evolving joint dynamics of 5 causes of
death

e Extend copula SSMs by introducing
covariates into dependence measure

- Allows for time-varying dynamics
between causes of death

- Improves flexibility, makes it more
realistic

— Enables us to assess different
hypothetical scenarios

Contributions

Some Findings

Our findings underscore the
pandemic’s influence on the elderly
population

We find a competing relationship
between respiratory diseases and
COVID-19

Outlook

Consider potential impacts across
various demographic and socio-
economic groups

Higher-Dimensional Latent Variables
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Thank You!
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