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DATA DESCRIPTION

• US weekly data in time frame January 2015 – November 2022

• Most common conditions reported on death certificates where COVID-19 was listed

• Death counts of Circulatory, Alzheimer, Respiratory, Diabetes, Malignant
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MOTIVATION

• Data shows clear changes between periods before and after COVID-19 started

• Motivation: What is the influence of COVID-19 on major death counts?

1. Marginal structure: Assess level changes in mortality before/after COVID-19 started

2. Dependence structure: Understand dependence structure among causes and whether it
changes with COVID-19

→ Separate marginal behavior from the depencence structure

→ Copula approach

2Data
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NOTATION
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• For this talk: Only interested in bivariate copulas

• Notation:

• Consider random variables 𝑋1, 𝑋2 with

• marginal distribution functions 𝐹1, 𝐹2,

• marginal densities 𝑓1, 𝑓2, and

• joint distribution function 𝐹

• Example: 𝑋1 ∼ 𝐹1, 𝑋2 ∼ 𝐹2 independent

Copulas
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INTRODUCTION COPULAS (1)
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𝑋1 ∼ 𝑁 2,3 , 𝑋2 ∼ Exp 1.5

      

 
 

 
 

 
 

 

  

 
 

X-Scale: 𝑋𝑖
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INTRODUCTION COPULAS (1)
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• PIT: 𝑋𝑖 ∼ 𝐹𝑖 ⇒ 𝑈𝑖 = 𝐹𝑖 𝑋𝑖 ∼ 𝑈[0,1]

• Inverse PIT: 𝑈𝑖 ∼ 𝑈 0,1 ⇒ 𝐹𝑖
−1 𝑈𝑖 ∼ 𝐹𝑖

                  

 
  

 
  

 
  

 
  

 
  

 
  

  

 
 

      

 
 

 
 

 
 

 

  

 
 

𝑈𝑖 = 𝐹𝑖(𝑋𝑖)

𝑋𝑖 = 𝐹𝑖
−1(𝑈𝑖)

X-Scale: 𝑋𝑖 U-Scale: 𝑈𝑖

               

 
 
 
 
  
 

        

 
  

 
  

 
  

 
  

 
  

 
  

𝑋1 ∼ 𝐹1, 𝑋2 ∼ 𝐹2 independent

               

 
 
 
 
  
 

      

 
  
 

 
  
 

 
  
 

 
  
 

𝑋1 ∼ 𝑁 2,3 , 𝑋2 ∼ Exp 1.5

Copulas



Data Marginal Model Copula Model ResultsCopulas Scenarios

INTRODUCTION COPULAS (1)
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• Copulas separate margins from dependence
structure

• Bivariate copula 𝐶: distribution function on 0,1 2 with
uniformly distributed margins

• Sklar‘s Theorem (1959):

𝐹 𝑥1, 𝑥2 = 𝐶 𝐹1 𝑥1 , 𝐹2 𝑥2

                  

 
  

 
  

 
  

 
  

 
  

 
  

  

 
 

      

 
 

 
 

 
 

 

  

 
 

X-Scale: 𝑋𝑖 U-Scale: 𝑈𝑖

𝑈𝑖 = 𝐹𝑖(𝑋𝑖)

𝑋𝑖 = 𝐹𝑖
−1(𝑈𝑖)
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INTRODUCTION COPULAS (1)
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Z-Scale: 𝑍𝑖
𝑍𝑗 = Φ−1(𝑈𝑗)

𝑈𝑗 = Φ(𝑍𝑗)

Use contour plots on z-scale

• Identify signature shapes of 
common bivariate copula families

• Here: Circles correspond to 
independence
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𝑈𝑖 = 𝐹𝑖(𝑋𝑖)

𝑋𝑖 = 𝐹𝑖
−1(𝑈𝑖)

• Copulas separate margins from dependence
structure

• Bivariate copula 𝐶: distribution function on 0,1 2 with
uniformly distributed margins

• Sklar‘s Theorem (1959):

𝐹 𝑥1, 𝑥2 = 𝐶 𝐹1 𝑥1 , 𝐹2 𝑥2
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INTRODUCTION COPULAS (2)

Examples of bivariate copula families:

Kendall‘s 𝜏: Dependence measure in [-1,1], does not depend on marginal distributions

6Copulas
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INTRODUCTION COPULAS (2)

Examples of bivariate copula families:

Kendall‘s 𝜏: Dependence measure in [-1,1], does not depend on marginal distributions

6

Advantages:

(1) Copulas allow for very flexible,

non-Gaussian dependencies

(2) Copulas can be used together

with arbitrary margins

Copulas
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MARGINAL MODELING

7

Start with mortality data on the original scale: 𝑌𝑡,𝑗 , 𝑡 = 1,… , 𝑇, 𝑗 = 1,… , 5

1 = Circulatory

2 = Alzheimer

3 = Respiratory

4 = Diabetes

5 = Malignant

Original Scale

Marginal Model
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MARGINAL MODELING

7

Start with mortality data on the original scale: 𝑌𝑡,𝑗 , 𝑡 = 1,… , 𝑇, 𝑗 = 1,… , 5

Decompose each cause 𝑌𝑡,𝑗 into Trend 𝑇𝑡,𝑗, Seasonality 𝑆𝑡,𝑗 , Covid Deaths 𝐶𝐷𝑡 , Indicator 𝐼𝑡 , 

Remainder 𝑅𝑡,𝑗

𝑌𝑡,𝑗 = 𝑇𝑡,𝑗 + 𝑆𝑡,𝑗 + 𝛿1,𝑡 ⋅ 𝐶𝐷𝑡 + 𝛿2 ⋅ 𝐼𝑡 + 𝑅𝑡,𝑗

𝐼𝑡 is 1 before COVID-19 started and 0 afterward

Decomposition using [Dokumentov and Hyndman 2022]

Original Scale

Decompose

Marginal Model
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MARGINAL MODELING

7

Original time series

Trend ෠𝑇𝑡,𝑗

Seasonality መ𝑆𝑡,𝑗

COVID-19 and Indicator
መ𝛿1,𝑡 ⋅ 𝐶𝐷𝑡 + መ𝛿2 ⋅ 𝐼𝑡

Remainer ෠𝑅𝑡,𝑗

Marginal Model
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MARGINAL MODELING

7

Start with mortality data on the original scale: 𝑌𝑡,𝑗 , 𝑡 = 1,… , 𝑇, 𝑗 = 1,… , 5

Decompose each cause 𝑌𝑡,𝑗 = 𝑇𝑡,𝑗 + 𝑆𝑡,𝑗 + 𝛿1,𝑡 ⋅ 𝐶𝐷𝑡 + 𝛿2 ⋅ 𝐼𝑡 + 𝑅𝑡,𝑗

Original Scale

Decompose

Obtain standardized residuals

Ƹ𝜖𝑡,𝑗 =
𝑦𝑡,𝑗 − ො𝑦𝑡,𝑗

ො𝜎𝑗

Residual Scale

Marginal Model
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MARGINAL MODELING

7

Pseudo copula data can be obtained by ො𝑢𝑡,𝑗 = ෠𝐹𝑗( Ƹ𝜖𝑡,𝑗)

U-Scale

Residual Scale

Original Scale

Decompose

Obtain standardized residuals

Ƹ𝜖𝑡,𝑗 =
𝑦𝑡,𝑗 − ො𝑦𝑡,𝑗

ො𝜎𝑗

Start with mortality data on the original scale: 𝑌𝑡,𝑗 , 𝑡 = 1,… , 𝑇, 𝑗 = 1,… , 5

Decompose each cause 𝑌𝑡,𝑗 = 𝑇𝑡,𝑗 + 𝑆𝑡,𝑗 + 𝛿1,𝑡 ⋅ 𝐶𝐷𝑡 + 𝛿2 ⋅ 𝐼𝑡 + 𝑅𝑡,𝑗

Marginal Model
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• Consider contour plots of

Ƹ𝑧𝑡,𝑗 , Ƹ𝑧𝑡−1,𝑗

= Φ−1 ො𝑢𝑡,𝑗 , Φ−1 ො𝑢𝑡−1,𝑗

• Strong non-Gaussian serial

dependence (except malignant)

1. PROPERTY: SERIAL DEPENDENCE

Copula Model
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2. PROPERTY: CROSS-SECTIONAL DEPENDENCE

9

• Upper triangle: u-data scatter and 

Kendall‘s tau

• Diagonal: Histograms of u-data

• Lower triangle: Contours of

Ƹ𝑧𝑡,𝑗 , Ƹ𝑧𝑡,𝑘 = Φ−1 ො𝑢𝑡,𝑗 , Φ−1 ො𝑢𝑡,𝑘

• Non-Gaussian cross-sectional

dependence visible

Copula Model
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3. PROPERTY: KENDALL‘S TAU

10

Zero Low Medium High

Pairwise conditional Kendall‘s tau 

changes with COVID-19 Deaths

Very High Estimated using

Derumigny (2019)

𝜏
𝑈
𝑖 ,
𝑈
𝑗
𝐶
𝐷
=
𝐿
𝑒𝑣
𝑒𝑙

Copula Model
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3. PROPERTY: KENDALL‘S TAU

10

Zero Low Medium High Very High

𝜏
𝑈
𝑖 ,
𝑈
𝑗
𝐶
𝐷
=
𝐿
𝑒𝑣
𝑒𝑙

Copula Model

Estimated using

Derumigny (2019)

Which model allows

for these properties?
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• For 𝑡 = 1,… , 𝑇, 𝑗 = 1,… , 5:

11

𝑉𝑡−1 𝑉𝑡 𝑉𝑡+1
𝜏𝑙𝑎𝑡 𝜏𝑙𝑎𝑡 𝜏𝑙𝑎𝑡𝜏𝑙𝑎𝑡

𝜏𝑡−1,1
𝑜𝑏𝑠 𝜏𝑡+1,1

𝑜𝑏𝑠𝜏𝑡,1
𝑜𝑏𝑠𝜏𝑡−1,5

𝑜𝑏𝑠 𝜏𝑡+1,5
𝑜𝑏𝑠𝜏𝑡,5

𝑜𝑏𝑠

𝑈𝑡−1,1 𝑈𝑡,1 𝑈𝑡+1,1𝑈𝑡−1,5 𝑈𝑡,5 𝑈𝑡+1,5

Observation Equation:

State Equation:

Copula Model

COPULA-SSM WITH TIME-VARYING PARAMETERS
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• For 𝑡 = 1,… , 𝑇, 𝑗 = 1,… , 5:

• 𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗 + 𝛽𝑗 ⋅ 𝑁𝐶𝐷𝑡 → 𝛽𝑗 describes dependence of 𝜏𝑡,𝑗

𝑜𝑏𝑠 on COVID-19 deaths

• 𝑚𝑙𝑎𝑡 , 𝑚𝑗
𝑜𝑏𝑠 ∈ ℳ = {𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑡, 𝐺𝑢𝑚𝑏𝑒𝑙, 𝐶𝑙𝑎𝑦𝑡𝑜𝑛}

• Latent variable: Captures the unobserved health and lifestyle of the US population

11

𝑉𝑡−1 𝑉𝑡 𝑉𝑡+1
𝜏𝑙𝑎𝑡 𝜏𝑙𝑎𝑡 𝜏𝑙𝑎𝑡𝜏𝑙𝑎𝑡

𝜏𝑡−1,1
𝑜𝑏𝑠 𝜏𝑡+1,1

𝑜𝑏𝑠𝜏𝑡,1
𝑜𝑏𝑠𝜏𝑡−1,5

𝑜𝑏𝑠 𝜏𝑡+1,5
𝑜𝑏𝑠𝜏𝑡,5

𝑜𝑏𝑠

𝑈𝑡−1,1 𝑈𝑡,1 𝑈𝑡+1,1𝑈𝑡−1,5 𝑈𝑡,5 𝑈𝑡+1,5

Observation Equation:

State Equation:

Copula Model

COPULA-SSM WITH TIME-VARYING PARAMETERS
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THE MODEL TWODEP
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The model:

• Only the dependence between Alzheimer/Respiratory and latent states changes with
COVID-19

• Outperforms (1) the Gaussian model, (2) the model where COVID-19 is not taken into
account (𝛽𝑗 = 0), (3) the model where all 𝛽𝑗 ≠ 0

𝑈𝑡,1

𝑉𝑡
𝜏𝑙𝑎𝑡𝜏𝑙𝑎𝑡

𝑈𝑡,5𝑈𝑡,2 𝑈𝑡,3 𝑈𝑡,4

Circulatory Alzheimer Respiratory Malignant

𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗 + 𝛽𝑗 ⋅ 𝑁𝐶𝐷𝑡

𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗 + 𝛽𝑗 ⋅ 𝑁𝐶𝐷𝑡

𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗

Results

Diabetes
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THE MODEL TWODEP
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Interpretation:

• COVID-19 had a strong influence on the elderly population

• Respiratory and especially Alzheimer are along the leading causes of death in older
population

• Both respiratory diseases and COVID-19 directly impact the respiratory system

Results

𝑈𝑡,1

𝑉𝑡
𝜏𝑙𝑎𝑡𝜏𝑙𝑎𝑡

𝑈𝑡,5𝑈𝑡,2 𝑈𝑡,3 𝑈𝑡,4

Circulatory Alzheimer Respiratory Diabetes Malignant

𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗 + 𝛽𝑗 ⋅ 𝑁𝐶𝐷𝑡

𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗 + 𝛽𝑗 ⋅ 𝑁𝐶𝐷𝑡

𝐹𝑍(𝜏𝑡,𝑗
𝑜𝑏𝑠) = 𝛼𝑗
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SETUP OF SIMULATION

• Study pandemic period from June 2020 until November 2022

• What is the effect of a constant low/high number of COVID-19 deaths

• Study two scenarios

• Low-COVID-19 scenario:

• Set 𝐶𝐷𝑙𝑜𝑤 = 2353 to the 25% sample quantile of observed values

• High-COVID-19 scenario:

• Set 𝐶𝐷ℎ𝑖𝑔ℎ = 26026 to maximum observed value

14Scenarios
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SCENARIO-BASED SIMULATION

15

Alzheimer death counts Total death counts

Green: low-COVID-19, Blue: high-COVID-19

• High scenario lowers Respiratory death counts (Competing causes of death)

• High scenario elevates Alzheimer death counts until 2022

• At the end: High scenario lowers Alzheimer (Potentially health policy interventions)

• Overall mortality increases from low to high scenario

• Wider interval for high scenario: Indicates chance of extreme mortality risk

Respiratory death counts

Scenarios
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CONCLUSIONS

Some Findings

• Our findings underscore the
pandemic‘s influence on the elderly
population

• We find a competing relationship 
between respiratory diseases and 
COVID-19

16

Contributions

• Utilize copula SSMs to quantify the
evolving joint dynamics of 5 causes of
death

• Extend copula SSMs by introducing
covariates into dependence measure

→ Allows for time-varying dynamics                  
between causes of death

→ Improves flexibility, makes it more
realistic

→ Enables us to assess different 
hypothetical scenarios

Outlook

• Consider potential impacts across 
various demographic and socio-
economic groups

• Higher-Dimensional Latent Variables



Thank You!


